
Supplementary Figures

Schematic of OTU and DADA2 approaches towards amplicon sequencing errors.
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Figure 1. Circles represent identical sets of sequencing reads with size scaled by abundance and color
corresponding to the true error-free sequence (there are four distinct sequences in the sample: red, green,
blue and grey). Errors are introduced by amplicon sequencing from the left to the middle part of the
diagram. OTU methods guard against false positive inferences by lumping similar sequences together.
DADA2 uses a statistical model of amplicon errors to infer the underlying sample sequences directly, and
thus tries to denoise the data from the middle to the left.
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The output sequences inferred from the Balanced forward reads for UPARSE, DADA2,
MED, mothur (average-linkage) and QIIME (uclust).
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Figure 2. Frequency of output sequences from the Balanced forward dataset is plotted on the y-axis.
Hamming distance from each sequence to its nearest more-abundant neighbor is plotted on the x-axis.
UPARSE is used as a baseline to which the outputs of the other methods are compared. Algorithms
largely concur (black) in identifying sequences that are abundant and very different from other sample
sequences. However, DADA2 detects additional variation (blue) relative to UPARSE, especially within
UPARSE’s OTU radius (dashed line). MED also detects some fine-scale variation (green), but at the cost
of a significant number of false positives, typically One Offs that are 1-away from a more abundant correct
sequence, and MED does not detect low abundance sequences (grey). Mothur (orange) and QIIME (red)
both report a large number of additional spurious sequences, although most are relatively low frequency.
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The output sequences inferred from the HMP forward reads by UPARSE, DADA2, MED,
mothur (average-linkage) and QIIME (uclust).
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Figure 3. Frequency of output sequences from the HMP forward dataset is plotted on the y-axis.
Hamming distance from each sequence to its nearest more-abundant neighbor is plotted on the x-axis.
UPARSE is used as a baseline to which the outputs of the other methods are compared. Algorithms
largely concur (black) in identifying sequences that are abundant and very different from other sample
sequences. However, DADA2 detects additional variation (blue) relative to UPARSE, especially within
UPARSE’s OTU radius (dashed line). MED also detects some fine-scale variation (green), but at the cost
of a significant number of false positives, typically One Offs that are 1-away from a more abundant correct
sequence, and MED does not detect low abundance sequences (grey). Mothur (orange) and QIIME (red)
both report a large number of additional spurious sequences, although most are relatively low frequency.
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The output sequences inferred from the Extreme forward reads by UPARSE, DADA2, MED,
mothur (average-linkage) and QIIME (uclust).
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Figure 4. Frequency of output sequences from the Extreme forward dataset is plotted on the y-axis.
Hamming distance from each sequence to its nearest more-abundant neighbor is plotted on the x-axis.
UPARSE is used as a baseline to which the outputs of the other methods are compared. Algorithms
largely concur (black) in identifying sequences that are abundant and very different from other sample
sequences. However, DADA2 detects additional variation (blue) relative to UPARSE, especially within
UPARSE’s OTU radius (dashed line). MED also detects some fine-scale variation (green), but at the cost
of a significant number of false positives, typically One Offs that are 1-away from a more abundant
correct sequence, and MED does not detect low abundance sequences (grey). QIIME (red) reports a
large number of additional spurious sequences, although most are relatively low frequency. Mothur failed
to complete on this dataset due to the size of its calculated distance matrix.
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The output sequences inferred from the Balanced merged reads by UPARSE, DADA2, MED,
mothur (average-linkage) and QIIME (uclust).

1e−05

1e−03

1e−01

1 10 100
Hamming (Log−scale)

Fr
eq

ue
nc

y 
(L

og
−s

ca
le

)

Accuracy
Reference
Exact
One Off
Other

UPARSE

1e−05

1e−03

1e−01

1 10 100
Hamming (Log−scale)

Fr
eq

ue
nc

y 
(L

og
−s

ca
le

)

Vs. UPARSE
Added
Lost
Same

Accuracy
Reference
Exact
One Off
Other

DADA2

1e−05

1e−03

1e−01

1 10 100
Hamming (Log−scale)

Fr
eq

ue
nc

y 
(L

og
−s

ca
le

)

Vs. UPARSE
Added
Lost
Same

Accuracy
Reference
Exact
One Off
Other

MED

1e−05

1e−03

1e−01

1 10 100
Hamming (Log−scale)

Fr
eq

ue
nc

y 
(L

og
−s

ca
le

)

Vs. UPARSE
Added
Lost
Same

Accuracy
Reference
Exact
One Off
Other

Mothur

1e−05

1e−03

1e−01

1 10 100
Hamming (Log−scale)

Fr
eq

ue
nc

y 
(L

og
−s

ca
le

)

Vs. UPARSE
Added
Lost
Same

Accuracy
Reference
Exact
One Off
Other

QIIME

Figure 5. Frequency of output sequences from the Balanced merged dataset is plotted on the y-axis.
Hamming distance from each sequence to its nearest more-abundant neighbor is plotted on the x-axis.
UPARSE is used as a baseline to which the outputs of the other methods are compared. Algorithms
largely concur (black) in identifying sequences that are abundant and very different from other sample
sequences. However, DADA2 detects additional variation (blue) relative to UPARSE, especially within
UPARSE’s OTU radius (dashed line). MED also detects some fine-scale variation (green), but at the cost
of some false positives, typically One Offs that are 1-away from a more abundant correct sequence, and
MED does not detect low abundance sequences (grey). Mothur (orange) and QIIME (red) both report a
significant number of additional spurious sequences, although most are relatively low frequency.
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The output sequences inferred from the HMP merged reads by UPARSE, DADA2, MED,
mothur (average-linkage) and QIIME (uclust).
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Figure 6. Frequency of output sequences from the HMP merged dataset is plotted on the y-axis.
Hamming distance from each sequence to its nearest more-abundant neighbor is plotted on the x-axis.
UPARSE is used as a baseline to which the outputs of the other methods are compared. Algorithms
largely concur (black) in identifying sequences that are abundant and very different from other sample
sequences. However, DADA2 detects additional variation (blue) relative to UPARSE, especially within
UPARSE’s OTU radius (dashed line). MED also detects some fine-scale variation (green), but at the cost
of some false positives, typically One Offs that are 1-away from a more abundant correct sequence, and
MED does not detect low abundance sequences (grey). Mothur (orange) and QIIME (red) both report a
significant number of additional spurious sequences, although most are relatively low frequency.
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The output sequences inferred from the Extreme merged reads by UPARSE, DADA2, MED,
mothur (average-linkage) and QIIME (uclust).
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Figure 7. Frequency of output sequences from the Extreme merged dataset is plotted on the y-axis.
Hamming distance from each sequence to its nearest more-abundant neighbor is plotted on the x-axis.
UPARSE is used as a baseline to which the outputs of the other methods are compared. Algorithms
largely concur (black) in identifying sequences that are abundant and very different from other sample
sequences. However, DADA2 detects additional variation (blue) relative to UPARSE, especially within
UPARSE’s OTU radius (dashed line). MED also detects some fine-scale variation (green), but at the cost
of some false positives, typically One Offs that are 1-away from a more abundant correct sequence, and
MED does not detect low abundance sequences (grey). Mothur (orange) and QIIME (red) both report
some additional low-frequency spurious sequences.
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Illumina Miseq error rates as a function of quality.
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Figure 8. The forward-read error rates observed in the 142 pooled samples from MacIntyre 2015 are
shown for the case where the correct base is an A. The x-axis shows the quality score; the y-axis the
frequency of the specified transition. Dots show the observed frequencies, the black line the error model
inferred by DADA2 using its default loess fitting, and the red line the expected rates given the nominal
definition of the quality score: Q = −10log10(perr). Illumina quality scores are quite informative about
substitution error rates, but systematic deviations from the expected rates are observed. This plot was
generated by the plotErrors function in the DADA2 R package.
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Supplementary Tables

Direction 1Q Mean 3Q Merged Forward	  Only
Forward 593868 37 35.92 38 492082 557946
Reverse 593868 34 33.52 39 492082
Forward 613352 31 32.34 38 303293 449269
Reverse 613352 16 28.7 37 303293
Forward 2082062 32 33 38 1178835 1431321
Reverse 2082062 23 29.33 37 1178835

Quality	  Scores

Balanced

HMP

Extreme

Filtered	  Reads
Reads

Table 1. Sequencing summary of the Balanced, HMP and Extreme test datasets.

Strain Greengenes	  taxonomy Dilution	  group Tag
Bacteroides	  cellulosilyticus	  DSM	  14838 k__Bacteria,p__Bacteroidetes,c__Bacteroidia,o__Bacteroidales,f__Bacteroidaceae 10^-‐1 t__70164
Bacteroides	  eggerthii	  BEI	  HM-‐210 k__Bacteria,p__Bacteroidetes,c__Bacteroidia,o__Bacteroidales,f__Bacteroidaceae 10^-‐5 t__91265
Bacteroides	  fragilis	  ATCC	  23745 k__Bacteria,p__Bacteroidetes,c__Bacteroidia,o__Bacteroidales,f__Bacteroidaceae 10^-‐3 t__84566
Bacteroides	  massiliensis	  JCM	  12982 k__Bacteria,p__Bacteroidetes,c__Bacteroidia,o__Bacteroidales,f__Bacteroidaceae 10^-‐4 t__38326
Bacteroides	  ovatus	  DSM	  1896 k__Bacteria,p__Bacteroidetes,c__Bacteroidia,o__Bacteroidales,f__Bacteroidaceae 10^-‐0 t__74296
Bacteroides	  thetaiotaomicron	  DSM	  2079 k__Bacteria,p__Bacteroidetes,c__Bacteroidia,o__Bacteroidales,f__Bacteroidaceae 10^-‐3 t__50907
Bacteroides	  uniformis	  DSM	  6597 k__Bacteria,p__Bacteroidetes,c__Bacteroidia,o__Bacteroidales,f__Bacteroidaceae 10^-‐2 t__89266
Bacteroides	  vulgatus	  DSM	  1447 k__Bacteria,p__Bacteroidetes,c__Bacteroidia,o__Bacteroidales,f__Bacteroidaceae 10^-‐0 t__21615
Barnesiella	  intestinihominis	  DSM	  21032 k__Bacteria,p__Bacteroidetes,c__Bacteroidia,o__Bacteroidales,f__[Barnesiellaceae] 10^-‐5 t__21316
Clostridium	  celatum	  JCM	  1394 k__Bacteria,p__Firmicutes,c__Clostridia,o__Clostridiales,f__Clostridiaceae 10^-‐3 t__31700
Clostridium	  cocleatum	  DSM	  1551 k__Bacteria,p__Firmicutes,c__Erysipelotrichi,o__Erysipelotrichales,f__Erysipelotrichaceae 10^-‐2 t__56149
Clostridium	  methylpentosum	  DSM	  5476 k__Bacteria,p__Firmicutes,c__Clostridia,o__Clostridiales,f__Ruminococcaceae 10^-‐5 t__68506
Clostridium	  phytofermentans	  ATCC	  700394 k__Bacteria,p__Firmicutes,c__Clostridia,o__Clostridiales,f__Lachnospiraceae 10^-‐5 t__73805
Clostridium	  xylanovorans	  DSM	  12503 k__Bacteria,p__Firmicutes,c__Clostridia,o__Clostridiales,f__Lachnospiraceae 10^-‐1 t__70731
Coprococcus	  comes	  ATCC	  27758 k__Bacteria,p__Firmicutes,c__Clostridia,o__Clostridiales,f__Lachnospiraceae 10^-‐2 t__41496
Eubacterium	  rectale	  DSM	  17629 k__Bacteria,p__Firmicutes,c__Clostridia,o__Clostridiales,f__Lachnospiraceae 10^-‐4 t__53720
Howardella	  ureilytica	  DSM	  15118 k__Bacteria,p__Firmicutes,c__Clostridia,o__Clostridiales,f__91otu452 10^-‐5 t__23462
Parabacteroides	  distasonis	  JCM	  13400 k__Bacteria,p__Bacteroidetes,c__Bacteroidia,o__Bacteroidales,f__Porphyromonadaceae 10^-‐5 t__21798
Parabacteroides	  distasonis	  JCM	  13401 k__Bacteria,p__Bacteroidetes,c__Bacteroidia,o__Bacteroidales,f__Porphyromonadaceae 10^-‐1 t__1086
Parabacteroides	  merdae	  DSM	  19495 k__Bacteria,p__Bacteroidetes,c__Bacteroidia,o__Bacteroidales,f__Porphyromonadaceae 10^-‐2 t__33431
Parabacteroides	  sp.	  D13	  BEI	  HM-‐77 k__Bacteria,p__Bacteroidetes,c__Bacteroidia,o__Bacteroidales,f__Porphyromonadaceae 10^-‐5 t__91131
Paraprevotella	  clara	  DSM	  19731 k__Bacteria,p__Bacteroidetes,c__Bacteroidia,o__Bacteroidales,f__[Paraprevotellaceae] 10^-‐4 t__81974
Prevotella	  buccalis	  ATCC	  35310 k__Bacteria,p__Bacteroidetes,c__Bacteroidia,o__Bacteroidales,f__Prevotellaceae 10^-‐5 t__52712
Prevotella	  copri	  DSM	  18205 k__Bacteria,p__Bacteroidetes,c__Bacteroidia,o__Bacteroidales,f__Prevotellaceae 10^-‐5 t__30223
Roseburia	  intestinalis	  DSM	  14610 k__Bacteria,p__Firmicutes,c__Clostridia,o__Clostridiales,f__Lachnospiraceae 10^-‐4 t__27000
Roseburia	  inulinivorans	  DSM	  16841 k__Bacteria,p__Firmicutes,c__Clostridia,o__Clostridiales,f__Lachnospiraceae 10^-‐3 t__29181
Ruminococcus	  gnavus	  ATCC	  29149 k__Bacteria,p__Firmicutes,c__Clostridia,o__Clostridiales,f__Lachnospiraceae 10^-‐5 t__30356

Table 2. Composition of Extreme mock community. Tags were included in the id lines of the
fasta reads from each amplified strain.
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Total Chimeric Non-‐chimeric Total Chimeric Non-‐chimeric
DADA2 0 0 0 0 0 0
UPARSE 2 0 2 2 1 1
MED 0 0 0 0 0 0

Mothur 165 102 63 28 10 18
QIIME 290 185 105 93 71 22
DADA2 8 1 7 2 0 2
UPARSE 8 0 8 13 10 3
MED 0 0 0 0 0 0

Mothur 605 58 547 10 4 6
QIIME 1118 182 936 191 110 81
DADA2 4 0 4 0 0 0
UPARSE 13 0 13 1 0 1
MED 0 0 0 0 0 0

Mothur * * * 7 0 7
QIIME 3100 5 3095 8 0 8

Forward Merged

Ba
la
nc
ed

HM
P

Ex
tr
em

e

Table 3. Classification of Other sequences as chimeric or non-chimeric. The uparse-ref
algorithm was used to classify the Other sequences output by each method as chimeric or non-chimeric
by comparison to the references sequences for each mock community. The same parameter setting for
uparse-ref were used as in [9].
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Supplementary Notes

Supplementary Note 1: The limits of DADA2’s sensitivity to rare variants

DADA2 relies on repeated observations of a sequence to distinguish biological variants from sequencing
error. Thus, in order to identify a biological variant, there must be at least 2 error-free reads of that
sequence variant present in the data, with more required if the variant is close to another sample sequence.
Given a sequencing depth D, and a fraction of error-free sequences f (this varies greatly, but f ∼ 0.5 is
not uncommon for Illumina Miseq 2x250 forward reads), DADA2 will not effectively identify variants with
frequencies at or below 2/Df , as such variants are unlikely to produce at least two error-free reads.

This limitation is illustrated by the 4 reference strains DADA2 failed to detect in the forward reads of the
Extreme dataset. Strains in this dataset were separately PCR-ed and tagged with an indexing barcode,
so we can use that information (encoded in the id line of the fastq file) to examine these false negatives in
detail. Each strain that DADA2 failed to identify in the forward reads is listed below. NN refers to the
nearest neighbor, i.e. the most similar sequence that was identified by DADA2. Max abundance is the
maximum abundance among the unique sequences present in each strain’s reads:

Strains missed by DADA2 Total Reads Max Abundance Hamming to NN NN Abundance Tag

Prevotella buccalis 5 1 51 9 t 52712
Clostridium methylpentosum DSM 5476 5 1 25 13 t 68506
Clostridium phytofermentans ISDg 11 2 15 59564 t 73805
Parabacteroides sp. D13 3 2 1 28242 t 91131

Prevotella buccalis and Clostridium methylpentosum cannot be identified by DADA2 because the reads
from those strains are all unique singletons. The Parabacteroides sp. D13 reads include a doubleton
sequence, but it is 1-away from another real variant with abundance 28242, and it is not possible to statis-
tically differentiate sequences at such low abundance so near to another sequence at such high abundance
from errors. Finally, Clostridium phytofermentans has a doubleton that is 15-away from another inferred
sequence with ∼ 60k reads. This is on the boundary of DADA2’s sensitivity under the default sensitivity
parameter ΩA = 10−40, and if this parameter is made less conservative DADA2 will detect this sequence.
However, here we used default parameters, including the conservative default ΩA.
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Supplementary Note 2: Comparing uchime and isBimeraDenovo

The common chimera identification algorithms, and uchime in particular, were designed under the assump-
tion that sensitivity on nearby chimeric variants was not very important because nearby variants were likely
to be joined into the same OTU anyway. However, this assumption is violated by DADA2, as DADA2
distinguishes variants that differ by as little as one nucleotide. To overcome this shortcoming we developed
a simple new algorithm (isBimeraDenovo) that can identify chimeras at any separation (Methods).

To test the sensitivity and specificity of isBimeraDenovo we processed the Balanced forward reads with
DADA2 and with QIIME/uclust without any chimera filtering, and then compared the results of isBimer-
aDenovo and uchime on the output of each method. The rows (isBimeraDenovo) and columns (uchime)
of these 2x2 tables correspond to whether a sequence was identified as non-chimeric (FALSE) or chimeric
(TRUE). The entries indicate the number of corresponding output sequences or OTUs, and in parenthe-
ses are the number of those sequences that exactly (matched, did not match) a reference sequence or nt
(Methods).

FALSE TRUE FALSE TRUE

92 1 1175 70
(91/1) (1/0) (110/1065) (0/70)

44 166 224 1042
(2/44) (3/133) (4/220) (1/1041)

DADA2	  output QIIME	  output
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uchime uchime
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When applied to the DADA2 output sequences, isBimeraDenovo and uchime mostly agreed: 166/211
output sequences flagged be either algorithm were flagged by both. The main difference between methods
were the 44 sequences flagged as chimeric by DADA2 but not by uchime. Of those 44 sequences, 42/44
did not match a reference sequence or nt, consistent with these putative chimeras being spurious variants.
Furthermore, the 1 sequence that uchime alone flagged as chimeric was an exact match, consistent with
this variant being a real sequence that isBimeraDenovo correctly left unflagged.

The results on the output from QIIME/uclust were less clear. While the algorithms again agreed on most
chimera calls, each algorithm flagged a significant number of sequences that the other did not, and both sets
of algorithm-specific chimera calls appeared to consist primarily of spurious sequences. isBimeraDenovo
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flagged 224 sequences that uchime did not, of which 220/224 were not matches, while uchime flagged 70
sequences that isBimeraDenovo did not, of which 70/70 were not matches.

For a closer look at the characteristics of the chimeras identified by isBimeraDenovo in the DADA2 output,
we plotted a histrogram of the sequences flagged by each algorithm as a function of the hamming distance
between the flagged sequences and the nearest more abundant output sequence.
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The histograms for each method are overlaid on top of each other, and the uchime bars are completely
overlapped by the isBimeraDenovo bars. The excess area of the isBimeraDenovo bars shows that the
additional variants it identified relative to uchime were nearby other output sequences, and in fact were
almost entirely within 3% of a more abundant sequence (dashed line).

In total, these results show that isBimeraDenovo is more sensitive to nearby chimeras than uchime while
having a similarly high level of specificity. This makes isBimeraDenovo particularly well-suited for exact
sample inference methods like DADA2 which distinguish closely related sequences. The evidence for
the utility of isBimeraDenovo with fuzzier OTU methods was more mixed. The increased sensitivity of

Nature Methods: doi:10.1038/nmeth.3869



isBimeraDenovo to nearby variants was useful for QIIME/uclust as well, but isBimeraDenovo failed to
identify some chimeras with residual errors and chimeras whose ”parent sequences” were subsumed into
another OTU.
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