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The impact of read length on quantification
of differentially expressed genes and splice
junction detection
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Abstract

Background: The initial next-generation sequencing technologies produced reads of 25 or 36 bp, and only from a
single-end of the library sequence. Currently, it is possible to reliably produce 300 bp paired-end sequences for RNA
expression analysis. While read lengths have consistently increased, people have assumed that longer reads are
more informative and that paired-end reads produce better results than single-end reads. We used paired-end 101
bp reads and trimmed them to simulate different read lengths, and also separated the pairs to produce single-end
reads. For each read length and paired status, we evaluated differential expression levels between two standard
samples and compared the results to those obtained by qPCR.

Results: We found that, with the exception of 25 bp reads, there is little difference for the detection of differential
expression regardless of the read length. Once single-end reads are at a length of 50 bp, the results do not change
substantially for any level up to, and including, 100 bp paired-end. However, splice junction detection significantly
improves as the read length increases with 100 bp paired-end showing the best performance. We performed the
same analysis on two ENCODE samples and found consistent results confirming that our conclusions have broad
application.

Conclusions: A researcher could save substantial resources by using 50 bp single-end reads for differential expression
analysis instead of using longer reads. However, splicing detection is unquestionably improved by paired-end and
longer reads. Therefore, an appropriate read length should be used based on the final goal of the study.
Background
One of the main questions for a researcher performing a
sequencing experiment is the length of reads to use and
whether to use single-end reads or paired-end reads. Lon-
ger reads should, a priori, increase the level of uniquely
mapping reads, but such longer reads have an increased
cost in reagents and an increase in running time for the
instrument. While the determination of the proper read
length for an experiment is important across all sequen-
cing experiments, including genome re-sequencing, de
novo sequencing, RNA-seq, and ChIP-seq, we have only
focused on the use of RNA-seq for differentially expressed
genes (DEGs) and isoform detection.
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The initial reads on Illumina and other next-generation
platforms were extremely short and often only ranged up
to 25 or 36 bp [1]. While these reads were sufficient for
some assays, a substantial percentage of the reads could
not be mapped uniquely and were often discarded due to
the inability to determine their correct matching location
within the genome [2]. More recently, the lengths of reads
have increased substantially and sequencers have been
improved to allow for the sequencing of both ends of a
fragment to allow for paired-end sequences. The current
read length that is standard for many experiments is
paired-end 100 bp reads and there is also the possibility of
running paired-end 300 bp reads.
Since read lengths have increased substantially over

recent years and will continue to increase, we decided to
determine whether longer reads are more beneficial for
RNA-seq DEG and isoform determination. Contrary to
the assumption that substantial gains occur in the quality
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of the results as read length increases and when using
paired ends, we found that, for DEGs, there is little im-
provement in the results as the length increased beyond
50 bp. Thus, a researcher can cut his or her sequencing
budget by as much as half over 100 bp paired-end sequen-
cing (Table 1). For isoform detection, however, we found
strong evidence that longer reads are significantly better
than shorter reads for the detection of both known and
novel isoforms.

Results
We have used data from the SEQC Sequencing study to
investigate the effects of read-length on RNA-seq re-
sults and then validated the results using data from the
ENCODE consortium. Since our main goal was to in-
vestigate the role of read length in determining RNA-
seq results, we wanted to minimize all other variables.
Therefore, we obtained the same sets of physical reads
for the entire experiment and these reads were bioinfor-
matically trimmed to produce reads of shorter lengths.
This trimming is akin to what would have been obtained
if the sequencing machine had been stopped earlier than
it was for the longer reads. The quality and error profile of
the 50th base of a 50 bp read is the same as that of the
50th base of a 100 bp read.
We took two samples from the Association of Molecu-

lar Resource Facilities (ABRF) SEQC study that consisted
of RNA standards (see "Materials and methods"), labeled
here as A and B. For each sample, we took three sets of
paired-end 101 bp reads to form the basis of the analysis.
These reads were then processed to produce 100, 75, 50
and 25 bp paired-end reads and 100, 75, 50 and 25 bp
single-end reads. All of the reads were then aligned to the
human genome using the STAR aligner.

Mapping statistics and splice junction detection
Mapping statistics were first examined (Fig. 1a), and
the data showed overall consistent mapping statistics.
All alignments of 25 bp read lengths contained a low
number of uniquely mapped reads. This deficiency was
partially improved when using 50 bp read lengths, while
75 bp and 100 bp reads contained almost the same
number of uniquely mapped reads. The number of
Table 1 Approximate cost of sequencing for each read length
and sequencing type on a HiSeq 2500, high-output mode v3
(eight lanes per flowcell)

Per lane cost

Read configuration Single end Paired end

25 bp $950 $1,275

50 bp $1,100 $1,650

75 bp $1,250 $2,025

100 bp $1,400 $2,400
multi-mapped reads increased when using 25 bp reads,
whereas all other read lengths were consistent. However,
the number of multi-mapped reads increased significantly
when using single-end reads (Fig. 1).
The number of splice junctions detected for each

alignment was also determined (Fig. 1b). Alignments
with 25 bp read lengths resulted in a significantly lower
number of splice junctions detected (t = −13.13, p value =
2.2 × 10−16). Moreover, the numbers of splice junctions
detected by the alignment of 100 bp reads was signifi-
cantly higher than with any other read lengths (t = 7.08,
p value = 9.5 × 10−8). Also, single-end reads detected
fewer splice junctions overall when compared with the
paired-end reads. In summary, longer paired-end reads
are significantly better for splice junction detection.

Differential expression at different read lengths
The aligned reads were processed through one of three
computational pipelines to determine differential expres-
sion (DESeq, EdgeR and Cufflinks). The log2 fold-change
data from these pipelines were used to determine DEGs
and we extracted the top 200 DEGs from each pipeline
for comparison. There was a high overall degree of
consistency between the three pipelines (Fig. 2) for the
sets of genes that were determined to be significantly
differentially expressed for any specific read length.
The top 200 DEGs for all read lengths for each differen-

tial expression method and each sample were sorted both
by log2 based fold-change (Log2FC) of both up-regulated
(+Log2FC) and down-regulated genes (−Log2FC) and by
p value and compared. The number of orphan (read-
length-specific) genes was then calculated. For single-end
samples (Fig. 2a), 25 bp read lengths gave the highest per-
centage (average of 13.8 %) of orphan genes among all
differential expression methods and samples. This shows
that the differential expression profile calculated using the
25 bp read length is significantly different. Using paired-
end 25 bp reads reduced this difference (Fig. 2b; down to
an average of 5 %); however, among paired-end reads, 25
bp reads still gave the highest difference. The differences
between 50 bp, 75 bp and 100 bp, for both paired-end and
single-end reads, were small (0–12 % orphan genes).
The number of read lengths that support any specific

DEG was calculated using the same overlap as above. For
single-end reads (Fig. 2c), the percentage of DEGs sup-
ported by all four read lengths is fairly low. This percent-
age is significantly higher (t = −4.85, p value = 0.00015)
when using paired-end reads (Fig. 2d), which suggests that
paired-end reads are better for determining DEGs. Also,
sorting on p value instead of Log2FC improves the overlap
when using single-end reads and significantly improves
the overlap when using paired-end reads.
For a true-positive comparison of gene expression, we

used previously reported quantitative PCR (qPCR) results
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Fig. 1 Mapping statistics of all samples and read lengths. a Each sample and read length is plotted with its respective percentage of uniquely
mapped, multi-mapped and unmapped reads. The 25 bp reads have the lowest percent of uniquely mapped reads across all samples. Single-end
reads also have higher percentage of multi-mapped reads and slightly lower percentage of uniquely mapped reads. b The number of splice junctions
detected for each sample is plotted. The 25 bp samples detected the least number of junctions and single-end reads detected significantly
fewer junctions overall than paired-end reads. The error bars represent the highest and lowest number of splice junctions detected
across replicates
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comparing the expression of samples A and B (Fig. 3). We
calculated the Pearson correlation and root mean square
deviation (RMSD) between all the DEGs for each read
length and the qPCR results. While no read length results
were completely concordant with the qPCR results, the
lowest level of identity was achieved with the single-end
and paired-end 25 bp reads and the quality did not signifi-
cantly improve beyond that achieved with 50 bp single-
end reads (Fig. 3a, b).
We next looked at the lists of the top 200 DEGs iden-
tified for each read length to determine their overlap
(Fig. 3c, d). These lists represent the main result of an
RNA-seq experiment performed using a particular read
length. Overlap between the lists of the top 200 DEGs
sorted by Log2FC shows that single-end 25 bp reads
perform the worst; however, this performance is nicely
recovered when using paired-end 25 bp reads (average
of 121.5 versus 137 genes, respectively). Most 100 bp
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Fig. 2 Determination of differentially expressed genes according to read length and differential expression method. a Single-end read samples.
The number of orphan genes (read-length-specific genes) in the overlap of the top 200 genes sorted by -Log2-based fold change (-Log2FC;
down-regulated), +Log2FC (up-regulated) and p value. b Paired-end read samples. The number of orphan genes (read-length-specific genes)
in the overlap of the top 200 genes sorted by -Log2FC, +Log2FC and p value. c Single-end read samples. The plot shows the agreement for
the top 200 differentially expressed genes by different read length. d Paired-end read samples. The plot shows the agreement for the top 200
differentially expressed genes by different read length
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reads performed similarly when comparing paired-end
versus single-end reads. Therefore, the gain in perform-
ance is not significant when using reads >50 bp for
paired-end reads and >75 bp for single-end reads.
Additionally, we looked at genes that are paralogous

(n = 21,459) to investigate whether longer read lengths
result in higher mapping of overall reads to these genes
(Figure S6a in Additional file 1). We calculated the total
number of reads mapped to these genes in the paired-
end SEQC dataset of samples A and B. To our surprise,
with the exception of 25 bp reads, all the read lengths
resulted in equal numbers of reads aligned to the paralo-
gous genes. The overall trend of number of reads mapped
as a function of read length stays the same regardless of
paralogous gene length (Figure S6b in Additional file 1).

Splicing detection
Besides DEG detection, another function of RNA-seq is
to determine splice sites and RNA isoforms. Using our
variable length reads, we determined the number of
splice sites that were detected using the STAR algorithm.
We found that, for the detection of both known splice
sites (Fig. 4a) and novel splice sites (Fig. 4b), there was a
marked improvement with longer read lengths, and with
the use of paired-end reads relative to single-end reads.
The reason for this improvement is presumably because
longer reads are generally superior for mapping and they
have a greater chance of overlapping a splice junction,
which is a major component of splicing detection. Based
on the results, the longest reads (≥100 bp) should be
used if junction detection is the primary goal of a se-
quencing experiment. This holds true for both known
and novel junctions.
The percentage of splice junctions that were detected

with all the reads lengths was also determined (Fig. 5).
Overall, the percentage of common splice junctions
detected with all four read lengths is very small (Fig. 5a).
All four read lengths detect only about 8–9 % of known
splice junctions and about 1–2 % of novel splice junc-
tions. However, since 25 bp read lengths contribute to



Fig. 3 Comparison of previously reported qPCR results with our DEG results. a Pearson correlation between Log2FC of genes according to
various differential expression methods and qPCR. Single-end 25 bp reads have the worst correlation when using DESeq and EdgeR. b Root mean
square deviation (RMSD) between Log2FC and qPCR. Single-end 25 bp reads give results farthest from the true values. c Common genes between
the top 200 genes identified by various differential expression methods and qPCR sorted by +Log2FC. d Same as (c), except sorted by –Log2FC.
The overlap of common genes improves as read length increases. However, the gain is not significant for reads >50 bp for paired-end and >75
bp for single-end reads
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many false positives, the overlap was also analyzed after
discarding results found with the 25 bp read length
(Fig. 5b). The percentage of common splice junctions in-
creased to over 50 % for known splice junctions and
over 20 % for novel junctions. This also shows that the
25 bp read length does not detect many splice junctions
that are detected by reads lengths greater than 25 bp.
To further confirm this result, we examined well-

validated, “golden junctions”, which were found by all
five sequencing platforms from the ABRF study on
RNA-seq [3] (Figure S1 in Additional file 1). These data
showed that 25 bp reads showed the lowest percentage
overlap with golden junctions (9.6 %). However, read
lengths longer than 25 bp all showed high overlap (97
%) and there was relatively little difference between read
lengths. Therefore, read lengths of 50 bp or longer can
still be used for detecting bona fide junctions.

Confirmation of results on ENCODE samples
In order to confirm our findings on an additional data
set, we performed an identical analysis on RNA-seq data
from NHDF and IMR90 cells obtained from an



Fig. 4 Splice junction agreement and inter-replicate reproducibility. a Number of known and novel junctions that were orphans (read-length-specific
junctions) according to the read length in a specific sample. b Percentage of known junctions that were common when paired-end and single-end
samples of the same read length were intersected. Error bars represent the range of all the replicates
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Fig. 5 Common splice junctions detected with different read lengths. a Percentage of splice junctions detected with all four read lengths. b
Percentage of splice junctions detected with all read lengths except 25 bp
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ENCODE study (Figures S3, S4, and S5 in Additional file
1). The only difference was that there were only two rep-
licates available for each ENCODE sample whereas there
were three replicates available for the SEQC samples.
Additionally, there was no qPCR data available for the
ENCODE samples. The results for SEQC samples were
mainly replicated when using the ENCODE samples,
with a consistent trend of little improvement over short
reads’ utility for DEG detection but longer reads consist-
ently improving isoform detection.

Confirmation of results using RSEM/EBseq method
We also aligned all the SEQC samples using RSEM [4]
and then performed differential expression using EBseq
[5]. The differential expression tables were then analyzed
to find the number of orphan reads and percentage over-
lap similar to in Fig. 2 (Figure S2 in Additional file 1).
RSEM/EBseq showed higher overlap and less orphan
genes between read lengths. However, the overall trend
is still similar and thus the conclusions made using the
STAR aligner still hold true.

Discussion
When a researcher performs an RNA-seq experiment,
he or she is confronted with the question of which read
length to use and whether single-end reads are sufficient,
or if they require the sequencing of both ends of their
fragments. We have utilized two distinct datasets (SEQC
and ENCODE) to provide insight into this critical aspect
of experimental design. Our findings show that longer
reads are not necessarily significantly better than shorter
reads and an intermediate length of reads would provide
adequate results for differential expression analysis.
We found that 25 bp reads are simply too short for

effective use in most RNA-seq applications. They result
in high numbers of multi-mapped reads and, depending
upon the alignment protocol, may thus result in loss or
inaccurate mapping of the data. This effect is even more
pronounced when using 25 bp single-end reads. Also,
they result in the highest number of orphan genes, which
means the gene quantification accuracy may be question-
able. Other than 25 bp reads, all other read lengths show
similar accuracy and there is little gain in accuracy with
longer read lengths. Paired-end reads improve accuracy of
differential expression as shown by the qPCR comparison,
although this gain is not significant. Paired-end reads are
useful more at the alignment level than the differential
expression level. They lower the percentage of multi-
mapped reads and thus fewer reads are thrown out before
quantification. They might also help in quantifying genes
that have a high number of duplicated regions, as evi-
denced by our analysis of pseudogenes.
For an experiment whose goal is only to determine

differential expression, the improvement beyond 50 bp
single-end reads is not substantial and would not justify
the added cost. This lack of improvement is due to the
fact that there is not a considerable gain in the mapp-
ability of sequencing reads beyond 50 bp read lengths.
This mapping lies at the heart of detecting differential ex-
pression when the reads from two conditions are mapped
back to the reference genome and the number of reads
mapping to a gene in each condition are compared (after
normalization). Using 50 bp single-end reads costs half as
much as using 100 bp paired-end reads (Table 1). Thus,
the amount of money saved is substantial.
More troubling, though, is the lack of consistency of

results between different read lengths. One would hope
that genes that were detected as differentially expressed
at one read length would also be detected as differen-
tially expressed at a different read length since the ex-
periment properly represented the expression of genes
in the cell. We found this not to be the case and there
was substantial variability in the lists of top DEGs be-
tween read lengths. This is likely due to a combination
of splice junction overlap and gene annotation (e.g.,
short genes), as well as the usual factors inherent to
library preparation, such as library size, RNA fragmenta-
tion, and GC content biases [6].
For splicing, we found contrasting results to those for

DEGs. Since splicing detection inherently relies on se-
quence assembly, and longer sequences improve assembly,
longer sequences led to superior splicing detection. This
improvement was for the detection of both known and
novel splice variants. Use of 100 bp reads not only resulted
in many more splice junctions being detected than with
smaller read lengths, but also the detection of many splice
junctions that are specific to 100 bp reads only. These
junctions would not have been detected if smaller read
lengths were used. The percentage of common splice
junctions between all four read lengths is very low, but
improves if 25 bp read lengths are not considered. This
suggests that 25 bp reads do not find most of the splice
junctions detected by longer reads.

Conclusions
The answer for the ideal length of sequencing for RNA-
seq depends on the desired results of the experiment. If
only a list of DEGs is desired, then 50 bp single-end reads
would be sufficient for most studies. In contrast, for spli-
cing detection, our results suggest that the longest reads
possible should be used, including using paired-end reads.

Materials and methods
RNA-seq samples
The raw data for this analysis came from two samples
from the ABRF SEQC study. The Universal Human Refer-
ence RNA (740000, Agilent Technologies) and Ambion
FirstChoice Human Brain Reference RNA (AM6000, Life
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Technologies) were used as samples A and B, respectively,
in the MicroArray Quality Control (MAQC) experiments
initiated in 2005 and summarized in Nature Biotechnology
in 2006 [7]. These RNA samples are well characterized
and were used as part of the SEQC study by the US Food
and Drug Administration [Seqc/Maqc-III Consortium. "A
comprehensive assessment of RNA-seq accuracy, repro-
ducibility and information content by the Sequencing
Quality Control Consortium."Nature biotechnology 32.9
(2014): 903-914.]
Three paired-end 100 bp replicates of sample A and

three paired-end 100 bp replicates of sample B were se-
lected and downloaded (Gene Expression Omnibus acces-
sion GSE47792). For confirmation of our results in an
independent sample, we used two replicates each of
paired-end 100 bp ENCODE RNA-seq samples for IMR90
and NHDF cells. The files were downloaded from the
UCSC ENCODE repository [8] with sample names
Nhdf70717012CellTotalFastqRd[1, 2]Rep1, Nhdf70717012
CellTotalFastqRd[1, 2]Rep2, Imr90CellTotalFastqRd[1, 2]
Rep1, and Imr90CellTotalFastqRd[1, 2]Rep2.
Sequencing data preprocessing
FASTQC [9] was run on all the samples to make sure
there were no sequencing errors. Raw sequences were
aligned to hg19 genome assembly (UCSC) with STAR
RNA-seq aligner version 2.3.0e [10]. In order to elimin-
ate variability between sequencing runs, we used the
same exact reads and trimmed them to lengths of 100,
75, 50 and 25 bp computationally and also separated the
paired ends to only use the first read from each pair in
order to simulate single-end sequencing.
RNA-seq differential gene expression analysis
Read counts were calculated using the BedTools’ inter-
sectBed command [11] and the GENCODE v.17 annota-
tion was used for gene calls. Sample A versus sample B
and imr90 versus nhdf differential expression were run
on all read counts with single-end and paired-end reads.
Three methods of differential expression were used:
Cufflinks v.2.1.1 [12], DESeq v.1.10.1 [13] and EdgeR
v.3.0.8 [14]. Aligned BAM files were provided to Cuffdiff
from the Cufflinks suite with default options. Raw read
counts of uniquely aligned reads were used for DESeq
and EdgeR. All read counts where the average read
count from all three replicates was less than 10 were dis-
carded before running analysis with DESeq and EdgeR.
The differential expression tables were then analyzed
using p values and log2FC cutoffs. This analysis was also
performed using the aligner RSEM [4] and differential
expression method EBseq [5]. The gene IDs for paralo-
gous genes were downloaded from Ensembl Biomart
v.72 by selecting attributes, then homology, and then
paralogs. The list was further filtered by homology type
to only keep within_species_paralog.
PrimePCR RT-qPCR gene expression analysis
RT-qPCR data were only available for samples A and B.
Undetectable Cq values (Cq > 35 or Cq = 0) were removed
from data for samples A and B. The standard deviation of
the Cq values for each gene was calculated, and the gene
MYSM1 exhibited the lowest standard deviation. The data
were normalized by subtracting the average Cq of
MYSM1 from each PrimePCR target to give the log2
difference between the endogenous control and the target
gene. The normalized Cq values were used to calculate
Log2FC between A and B. This differential expression
Log2FC was then used to calculate the Pearson and Spear-
man correlation to the RNAseq data using the cor() func-
tion from the R stats package. The RMSD was also
calculated using the Log2FC of RNAseq and qPCR data.
Splice junction analysis
Non-canonical junction detection was turned off in
order for the aligned files to be compatible with Cuf-
flinks. All other parameters were left as default. Splice
junction files produced by STAR were used for all
splice junction analysis. The total number of splice
junctions detected for each sample and read length was
taken from the log.final.out file printed by the aligner
STAR [10]. SJ.out.tab is also a file printed by STAR, which
contains all the junctions detected, and other metrics for
each junction. STAR was run in novel splice junction
detection mode and there was no splice junction data-
base provided. These junctions were intersected using
bedtools [11] and the Venn diagrams were created
using VennDiagram package in R [15]. Known junc-
tions were annotated using 1 bp window of GENCODE
v.17 splice junction file since STAR output is 1-based
and GENCODE bed files are 0-based. Overlap plots
were created using ggplot2 [16]. The “golden junctions”
are junctions found by all five platforms (454, Illumina,
PGM, Proton, 454) [3].
Additional file

Additional file 1: Supplementary Figures. A figure that shows the
percent of “golden junctions” detected in all current NGS platforms
(454, Illumina, PGM, Proton, 454) when intersected with each sample of
different read lengths. Supplementary Table. The supplementary table
contains the numerical data for all main text figures (Fig 1 – Fig 5). Each
sheet in the file contains data for part of figure as referred by sheet name.
Abbreviations
ABRF: Association of Molecular Resource Facilities; bp: base pair;
DEG: differentially expressed gene; Log2FC: log2-based fold change;
qPCR: quantitative PCR; RMSD: root mean square deviation..
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