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The first two steps in typical transcript-level RNA-seq processing 
workflows are alignment to a transcriptome or a reference genome and 
estimation of transcript abundances. These steps can be time consum-
ing. For example, aligning 20 samples, each with 30 million RNA-seq 
reads, using the widely used program TopHat2 (ref. 1) takes 28 core 
hours on 20 cores, while quantification with the companion program 
Cufflinks2 takes another 14 h. Such running times are likely to become 
prohibitive as sequence data from increasing numbers of samples are 
generated. Although the quantification of aligned reads can be sped 
up with streaming algorithms3 or by naive counting of reads4, these 
approaches have resulted in a decrease in quantification accuracy. To 
circumvent the alignment step, a recent study proposed quantifying 
samples by extraction of k-mers from reads followed by exact match-
ing of the k-mers using a hash table5. However, shredding reads into 
k-mers discards valuable information present in complete reads since 
each k-mer can align to more transcripts than the read itself. This 
results in a substantial loss of accuracy (Supplementary Fig. 1).

Although the direct use of k-mers is inadequate for accurate quan-
tification, the hash-based approach provides a basis for speeding up 
RNA-seq processing. Here we investigate whether information from 
k-mers within reads can be combined to maintain the accuracy of 
alignment-based quantification. We examine the central difficulty and 
key requirement for accurate quantification, which is the assignment  
of reads that cannot be uniquely aligned6. Typically, these multi- 
mapping reads are accounted for using a statistical model of RNA-seq6 
that probabilistically assigns such reads while inferring maximum 
likelihood estimates of transcript abundances. However, it has been 
shown that accurate quantification does not require information on 
where inside transcripts the reads may have originated from, but 
rather which transcripts could have generated them7. On the basis of 
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We present kallisto, an RNA-seq quantification program that 
is two orders of magnitude faster than previous approaches 
and achieves similar accuracy. Kallisto pseudoaligns reads to 
a reference, producing a list of transcripts that are compatible 
with each read while avoiding alignment of individual bases. We 
use kallisto to analyze 30 million unaligned paired-end RNA-seq 
reads in <10 min on a standard laptop computer. This removes 
a major computational bottleneck in RNA-seq analysis. 

this information, we develop a method based on pseudoalignment of 
reads and fragments, which focuses only on identifying the transcripts 
from which the reads could have originated and does not try to pin-
point exactly how the sequences of the reads and transcripts align.

A pseudoalignment of a read to a set of transcripts, T, is a subset, 
S  T, without specific coordinates mapping each base in the read 
to specific positions in each of the transcripts in S. Accurate pseu-
doalignments of reads to a transcriptome can be obtained using fast 
hashing of k-mers together with the transcriptome de Bruijn graph 
(T-DBG). de Bruijn graphs have been crucial for DNA and RNA 
assembly8, where they are usually constructed from reads. Kallisto 
uses a T-DBG, which is a de Bruijn graph constructed from k-mers 
present in the transcriptome (Fig. 1a), and a path covering of the 
graph, a set of paths whose union covers all edges of the graph, where 
the paths correspond to transcripts (Fig. 1b). This path covering of 
a T-DBG induces multi-sets on the vertices, called k-compatibility 
classes. A compatibility class can be associated to an error-free read by 
representing it as a path in the graph and defining the k-compatibility 
class of a path in the graph as the intersection of the k-compatibility 
classes of its constituent k-mers (Fig. 1c). An equivalence class for 
a read is a multi-set of transcripts associated with the read; ideally 
it represents the transcripts a read could have originated from and 
provides a sufficient statistic for quantification. A key point is that the 
k-compatibility class of an error-free read coincides with the minimal 
equivalence class consisting of transcripts containing the read for 
large k (Online Methods).

Previously, the equivalence classes of reads have been determined 
via the time-consuming alignment of the reads to the transcriptome. 
However, since a hash of k-mers provides a fast way to determine their 
k-compatibility classes, the equivalence class of (error-free) reads can 
be efficiently determined by selecting suitably large k and then inter-
secting the reads’ constituent k-compatibility classes. The difficulty 
of implementing such an approach for RNA-seq lies in the fact that 
reads have errors. However, with very high probability, an error in a 
k-mer will result in it not appearing in the transcriptome, and such 
k-mers are simply ignored. The issue of errors is also ameliorated by a 
technique that we implemented to improve the efficiency of pseudoa-
lignment that removes redundant k-mers from the computation on 
the basis of information contained in the T-DBG (Online Methods). 
Because fewer k-mers are inspected, there is less opportunity for 
erroneous k-mers to produce misleading results. With pseudoalign-
ments efficiently computable, we explored the use of the expectation- 
maximization (EM) algorithm applied to equivalence classes for 
quantification5 (Online Methods). Although the likelihood func-
tion is simpler than some other models used for RNA-seq2,3,9, it still 
includes a model for bias, and its use has the advantage that the EM 
algorithm can be applied for many rounds very rapidly.

http://dx.doi.org/10.1038/nbt.3519
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To validate and benchmark kallisto, we tested it on a set of 20 
RNA-seq simulations generated with the program RSEM (RNA-Seq  
by Expectation Maximization)9, as well as on RNA-seq data from 
the Sequencing Quality Control Consortium (SEQC)10 for which 
quantitative PCR (qPCR) can be used as an independent validation  
of quantification. The transcript abundances and error profiles 
for the simulated data were based on the quantification of sample  
NA12716_7 from the Genetic European Variation in Health  
and Disease (GEUVADIS) data set11. To accord with GEUVADIS 
samples, the simulations consisted of 30 million reads. We examine 
the quality of the kallisto pseudoalignments as compared to pseu-
doalignments extracted from Bowtie2 alignments. The two methods  
agreed exactly on the set of reported transcripts for 70.7% of the 
reads, but when they differed on the (pseudo)alignment of a read, 
Bowtie2 reported 8.02 transcripts on average compared to 4.96 for 
kallisto. Despite being much more specific than Bowtie2, kallisto had  
almost 100% sensitivity. The transcript of origin was contained in 
the set of reported transcripts for 99.89% of the reads, only 0.1% 
less than with Bowtie2 (99.99%). On the real data used as the basis 
for the simulations (NA12716_7), the programs displayed similar 
characteristics. The two methods agreed exactly for 66.22% of reads 
where both (pseudo)aligned, and for differing reads Bowtie2 aligned 
to 8.94 transcripts on average, versus 4.86 for kallisto. As expected, 
the number of (pseudo)aligned reads was lower for the real data, with 
86.5% of the reads aligned by Bowtie2 versus 90.8% pseudoaligned 
by kallisto.

The accuracy of kallisto is similar to those of existing RNA-seq 
quantification tools (Fig. 2a and Supplementary Fig. 2) and enables 
a substantial improvement over Cufflinks2 and Sailfish5. The inferior 
performance of Cufflinks can be attributed to its limited application 
of the EM algorithm in cases where reads multi-map across genomic 
locations12. Unlike Sailfish5, which shreds reads into k-mers for fast 
hashing, resulting in a loss of information, kallisto’s pseudoalignments 
explicitly preserve the information provided by k-mers across reads 
(Supplementary Fig. 1).

All programs have reduced performance on paralogs owing to 
the similarity among genes within a family, but kallisto remains 
highly competitive, again almost matching RSEM’s performance 
(Supplementary Figs. 3 and 4). To test kallisto’s suitability for allele-
specific expression quantification, we simulate reads from a transcrip-
tome with two distinct haplotypes. The Spearman’s correlation for 
kallisto was 0.833 vs. 0.848 for RSEM, 0.830 for eXpress and 0.706 for 
Sailfish, showing that kallisto is suitable for allele-specific expression. 
Notably, the simulation was based on RSEM, for generating both the 
parameters and then the data using them.

We also tested kallisto on SEQC data that has independently been 
quantified with qPCR. Kallisto performed similarly to other programs 
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Figure 1 Overview of kallisto. The input consists of a reference transcriptome 
and reads from an RNA-seq experiment. (a) An example of a read (in black) 
and three overlapping transcripts with exonic regions as shown. (b) An index 
is constructed by creating the transcriptome de Bruijn Graph (T-DBG) where 
nodes (v1, v2, v3, ... ) are k-mers, each transcript corresponds to a colored 
path as shown and the path cover of the transcriptome induces a  
k-compatibility class for each k-mer. (c) Conceptually, the k-mers of a read are 
hashed (black nodes) to find the k-compatibility class of a read. (d) Skipping 
(black dashed lines) uses the information stored in the T-DBG to skip k-mers 
that are redundant because they have the same k-compatibility class. (e) The  
k-compatibility class of the read is determined by taking the intersection  
of the k-compatibility classes of its constituent k-mers.
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Figure 2 Performance of kallisto and other methods. (a) Accuracy of kallisto, 
Cufflinks, Sailfish, EMSAR, eXpress and RSEM on 20 RSEM simulations 
of 30 million 75-bp paired-end reads based on the abundances and 
error profile of GEUVADIS sample NA12716_7 (selected for its depth of 
sequencing). For each simulation, we report the accuracy as the median 
relative difference in the estimated read count of each transcript. Estimated 
counts were used rather than transcripts per million (TPM) because the latter 
is based on both the assignment of ambiguous reads and the estimation of 
effective lengths of transcripts, so a program might be penalized for having  
a differing notion of effective length despite accurately assigning reads.  
The values reported are means across the 20 simulations (the variance 
was too small to be visible in this plot). Relative difference is defined as 
the absolute difference between the estimated abundance and the ground 
truth divided by the average of the two. (b) Total running time in minutes 
for processing the 20 simulated data sets of 30 million paired-end reads 
described in a. All processing was done using 20 cores, with programs being 
run with 20 threads when possible (Bowtie2, TopHat2, RSEM, Cufflinks) and  
20 parallel processes otherwise (eXpress, kallisto). Each box represents one 
dataset. Since eXpress and kallisto process all datasets in parallel, the only 
quantification time shown is the maximum of all the quantifications.
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(Supplementary Table 1). Learning sequence specific bias (Online 
Methods and Supplementary Table 2) provides a slight improvement 
in agreement with qPCR, similar to improvements with bias learning 
in Cufflinks and eXpress.

Kallisto outperformed all other methods in speed, thanks to optimi-
zations made possible by the pseudoalignment framework (Fig. 1d,e, 
and Methods). Each simulation was processed on average in less than 
7.5 min on a single core. The total runtime for kallisto on the simulated 
data was 11.47 min (Fig. 2b). A simple word count of a simulated data 
set took 75 s, providing a lower bound for optimal quantification time 
and demonstrating that kallisto’s speed is near optimal. The software 
is also memory efficient, requiring a maximum of 3.2 Gb of RAM per 
sample. This allows kallisto to process 30 million read simulations in 
less than 10 min on a small laptop with a 1.3-GHz processor, demon-
strating that with kallisto, RNA-seq analysis of even large data sets is 
tractable on non-specialized hardware.

The speed of kallisto also enables uncertainty of abundance esti-
mates to be quantified via the bootstrap technique of repeating 
analyses after resampling with replacement from the data. After the 
equivalence classes of the original reads have been computed, kallisto 
samples multinomially from the equivalence classes according to 
their counts and runs the EM algorithm on those newly sampled 
equivalence class counts. The running time for each bootstrap sample  
depends on the number of equivalence classes, which is much smaller 
than, and roughly independent of, the number of reads. While run 
times are transcriptome-specific, each sample typically takes on the 
order of 10 s, and kallisto can multithread the bootstrapping. Since the 
data associated with each bootstrap consists solely of a set of equiva-
lence class counts and transcript abundances, the memory usage is 
trivial. We explore the accuracy with which the bootstrap can estimate 
the uncertainty inherent in a dataset by examining repeated 30 million 
read subsamples of a deep 216-million-read human RNA-seq data-
set from the SEQC-MAQCIII12 consortium (Supplementary Fig. 5). 
We perform 40 bootstraps (see Supplementary Fig. 6 for an analysis  
of convergence) on only a single sample of 30 million reads, yet the 
variance in estimates correlated highly (R = 0.933) with the variance 
of abundance estimates obtained from the other subsamples. While it 
is expected that the variance on abundance estimates should increase 
approximately linearly with abundance13, our results show that there 
is high variability in uncertainty of estimates as a result of the complex 
structure of similarity among transcripts, especially multiple isoforms 
of genes. A naive attribution of Poisson variance to the shot noise 
in read count estimates from transcripts, as is commonly done in 
gene-level RNA-seq analyses, is revealed to be a poor proxy for the 
true variance (Supplementary Figs. 7 and 8). Thus, the bootstrap 
should prove to be valuable in downstream applications of RNA-seq, 
as kallisto now allows the uncertainty in estimates to be factored in 
to downstream statistical computations.

The simplicity of kallisto means that the software has few  
parameters. Only the k-mer length and the mean of the fragment 
length distribution are required for quantification. The latter is  
estimated during run-time when paired-end reads are provided.  
The k-mer length must be large enough that random sequences of 
length k do not match to the transcriptome and short enough to 
ensure robustness to errors. Subject to those constraints, the perform-
ance of kallisto is robust to the k-mer length chosen (Supplementary 
Figs. 9 and 10). Although we have focused on the performance of 
kallisto on RNA-seq, the method should be generally applicable to 
quantification of sequence census datasets14.

MeThods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the online 
version of the paper.
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oNLINe MeThods
Index construction. The construction of the index starts with the formation of a 
colored de Bruijn graph15 from the transcriptome, where the colors correspond to 
transcripts. In the colored transcriptome de Bruijn graph, each node corresponds 
to a k-mer and every k-mer receives a color for each transcript it occurs in. Contigs 
are defined to be linear stretches of the de Bruijn graph that have identical color-
ings. This ensures that all k-mers in a contig are associated with the same equiva-
lence class (the converse is not true: two different contigs can be associated with the 
same equivalence class). Once the graph and contigs have been constructed, kallisto 
stores a hash table mapping each k-mer to the contig it is contained in, along with 
the position within the contig. This structure is called the kallisto index.

For error-free reads, there can be a difference between the equivalence  
class of a read and the intersection of its k-compatibility classes. But for a  
read of length l this can only happen if there are two transcripts that have the 
same l – k + 1 k-mers occurring in different order. This is unlikely to happen 
for large k because it would imply that the T-DBG has a directed cycle shorter 
than l – k + 1. This fact also provides a criterion that can be tested.

Pseudoalignment. Reads are pseudoaligned by looking up the k-compatibil-
ity class for each k-mer in the read in the kallisto index and then intersect-
ing the identified k-compatibility classes. In the case of paired-end reads, the  
k-compatibility class lookup is done for both ends of the fragment and all the 
resulting classes are intersected. Since the T-DBG identifies each k-mer with 
its reverse complement, the k-mer hashing in kallisto is strand-agnostic; how-
ever, the implementation could also be adapted to require specific strandedness 
of reads from strand-specific protocols. To further speed up the processing, 
kallisto uses the structural information stored in the index: because all k-mers 
in a contig of the T-DBG have the same k-compatibility class, it would be 
redundant to include more than one k-mer from a contig in the intersection of  
k-compatibility classes. This observation is leveraged in kallisto by finding the 
distances to the junctions at the end of its contig each time a k-mer is looked up 
using the hash. If the read does arise from a transcript in the T-DBG, the k-mers 
up to those distances can be skipped without affecting the result of the intersec-
tion, resulting in fewer hash lookups. To help ensure that the read is consistent 
with the T-DBG, kallisto checks the last k-mer that is skipped to ensure its  
k-compatibility class is equal as expected. In rare case when there is a mismatch, 
kallisto defaults to examining each k-mer of the read. For the majority of reads, 
kallisto ends up performing a hash lookup for only two k-mers (Supplementary 
Fig. 11). While pseudoalignment does not require or make use of the locations 
of k-mers in transcripts, it is possible to extract such data from the T-DBG, and 
a “pseudobam output” option of kallisto takes advantage of this to produce an 
alignment file containing positions of reads within transcripts. With pseudobam 
it is possible to examine the location of reads within transcripts and genes of 
interest for quality control and analysis purposes.

Quantification. In order to rapidly quantify transcript abundances from 
pseudoalignments, kallisto makes use of the following form of the likelihood 
function for RNA-seq: 
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In equation (1), F is the set of fragments, T is the set of transcripts, lt is the 
(effective) length3 of transcript t and yf,t is a compatibility matrix defined as 1 if  
fragment f is compatible with t and 0 otherwise. The parameters are the αt, the 
probabilities of selecting fragments from transcripts. The likelihood can be 
rewritten as a product over equivalence classes, in which similar summation 

(1)(1)

terms have been factored together. In the factorization the numbers ce are the 
number of counts observed from equivalence class e. When equation (1) is 
written in terms of the equivalence classes, the equivalence class counts are 
sufficient statistics and thus, in the computations, are based on a much smaller 
set of data (usually hundreds of thousands of equivalence classes instead of 
tens of millions of reads). The likelihood function is iteratively optimized 
with the EM algorithm, with iterations terminating when, for every transcript 
t, αtN > 0.01 (N is the total number of fragments) changes less than 1% from 
iteration to iteration.

The transcript abundances are output by kallisto in transcripts per million9 
(TPM) units.

Bias correction. There are many sources of bias in RNA-seq, but  
previous work has identified sequence-specific bias12 as particularly prob-
lematic. Sequence-specific bias arises as a result of nonrandom priming  
of fragments, where the nucleotide sequences at the 3′ and 5′ ends affect  
the probability of sampling. The kallisto correction is similar to that of  
Roberts et al.12; however, it uses 6-mers of the transcript sequence  
overlapping the 5′ fragment, starting 2 bp upstream of the fragment.  
First kallisto measures the empirical frequency of 6-mers as estimated  
from the first 1 million pseudoalignable reads. To apply the bias correc-
tion, it uses an initial estimate for the abundance, using 50 rounds of the 
EM algorithm. The bias of 6-mers is used to adjust the effective length of 
each transcript by adding the bias of each 6-mer on both strands. To account 
for edge effects, kallisto only add the 6-mers from the start up to the length  
of the transcript minus the average fragment length. This process is repeated 
once more with an updated expression estimate after 550 rounds of the  
EM algorithm.

Bootstrap. The bootstrap is highly efficient in kallisto both because the EM 
algorithm is very fast and because the sufficient statistics of the model are the 
equivalence class counts. This latter fact means that bootstrap samples can be very 
rapidly generated once pseudoalignment of the fragments is completed. With the 
N original fragments having been categorized by equivalence class, generating  
a new bootstrap sample consists of sampling N counts from a multinomial dis-
tribution over the equivalence classes, with the probability of each class being 
proportional to its count in the original data. The transcript abundances for these 
new samples are then recomputed using the EM algorithm.

In kallisto the number of bootstraps to be performed is an option passed 
to the program, and because a large amount of data can be produced, the 
output is compressed in HDF5. The HDF5 files can be read into another 
program for processing (for example, R) or can be converted to plain text 
using kallisto.

Software, simulations and analysis. The kallisto program is available as 
Supplementary Software and for download from http://pachterlab.github.
io/kallisto/. The parameters and procedures for Cufflinks, Sailfish, EMSAR16, 
eXpress, and RSEM used for the results and figures in the paper are available 
via a Snakefile17 at https://github.com/pachterlab/kallisto_paper_analysis/. 
Source code for reproducing results and figures of the paper is available as 
Supplementary Code.
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Erratum: Genome-wide analysis reveals specificities of Cpf1 endonucleases 
in human cells 
Daesik Kim, Jungeun Kim, Junho K Hur, Kyung Wook Been, Sun-heui Yoon & Jin-Soo Kim 
Nat. Biotechnol.  doi:10.1038/nbt.3609; corrected online 18 July 2016

In the version of this article initially published, the year in the received date on the first page was given as “2015,” but should be “2016.” The error 
has been corrected for the print, PDF and HTML versions of this article.

Erratum: No longer going to waste
Ken Garber
Nat. Biotechnol. 34, 458–461 (2016); published online 6 May 2016; corrected after print 27 July 2016.

In the version of this article initially published, on p.460, columns 1 and 2, the number following “ACE-” was given as “2454” instead of “2494.”
The errors have been corrected in the HTML and PDF versions of the article.

Erratum: Nature Biotechnology ’s academic spinouts of 2015
Aaron Bouchie & Laura DeFrancesco
Nat. Biotechnol. 34, 484–492 (2016); published online 6 May 2016; corrected after print 27 July 2016.

In the version of this article initially published, on p.491, the subtitle read “double-stranded DNA” instead of “double-stranded RNA”. The error
has been corrected in the HTML and PDF versions of the article.

Erratum: Near-optimal probabilistic RNA-seq quantification
Nicolas L Bray, Harold Pimentel, Páll Melsted & Lior Pachter
Nat. Biotechnol. 34, 525–527 (2016); published online 4 April 2016; corrected after print 27 July 2016

In the version of this article initially published, in the HTML version only, the equation “αtN > 0.01” was written as “αtN > 0.01.”  In addition, in 
the Figure 1 legend, the formatting of the nodes was incorrect (v_1, etc., rather than v1). The errors have been corrected in the HTML and PDF 
versions of the article.
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